
 

Pain and Its Effects in the Human Neonate and Fetus 
Author: Anand, K J S; Hickey, P R 
Publication info: Pre- and Peri-natal Psychology Journal 3. 2 (Winter 1988): 103-123.
ProQuest document link 
Abstract: None available. 
Full Text: The evaluation of pain in the human fetus and neonate is difficult because pain is generally defined as
a subjective phenomenon.1 Early studies of neurologic development concluded that neonatal responses to
painful stimuli were decorticate in nature and that perception or localization of pain was not present.2
Furthermore, because neonates may not have memories of painful experiences, they were not thought capable
of interpreting pain in a manner similar to that of adults.3"5 On a theoretical basis, it was also argued that a high
threshold of painful stimuli may be adaptive in protecting infants from pain during birth.6 These traditional views
have led to a widespread belief in the medical community that the human neonate or fetus may not be capable
of perceiving pain.7,8 Strictly speaking, nociceptive activity, rather than pain, should be discussed with regard to
the neonate, because pain is a sensation with strong emotional associations. The focus on pain perception in
neonates and confusion over its differentiation from nociceptive activity and the accompanying physiologic
responses have obscured the mounting evidence that nociception is important in the biology of the neonate.
This is true regardless of any philosophical view on consciousness and "pain perception" in newborns. In the
literature, terms relating to pain and nociception are used interchangeably; in this review, no further distinction
between the two will generally be made. One result of the pervasive view of neonatal pain is that newborns are
frequently not given analgesic or anesthetic agents during invasive procedures, including surgery.9-19 Despite
recommendations to the contrary in textbooks on pediatric anesthesiology, the clinical practice of inducing
minimal or no anesthesia in newborns, particularly if they are premature, is widespread.9-19 Unfortunately,
recommendations on neonatal anesthesia are made without reference to recent data about the development of
perceptual mechanisms of pain and the physiologic responses to nociceptive activity in preterm and full-term
neonates. Even Robinson and Gregory's landmark paper demonstrating the safety of narcotic anesthesia in
preterm neonates cites "philosophic objections" rather than any physiologic rationale as a basis for using this
technique.20 Although methodologic and other issues related to the study of pain in neonates have been
discussed,2123 the body of scientific evidence regarding the mechanisms and effects of nociceptive activity in
newborn infants has not been addressed directly. ANATOMICAL AND FUNCTIONAL REQUIREMENTS FOR
PAIN PERCEPTION The neural pathways for pain may be traced from sensory receptors in the skin to sensory
areas in the cerebral cortex of newborn infants. The density of nociceptive nerve endings in the skin of
newborns is similar to or greater than that in adult skin.24 Cutaneous sensory receptors appear in the perioral
area of the human fetus in the 7th week of gestation; they spread to the rest of the face, the palms of the hands,
and the soles of the feet by the 11th week, to the trunk and proximal parts of arms and legs by the 15th week,
and to all cutaneous and mucous surfaces by the 20th week.25-26 The spread of cutaneous receptors is
preceded by the development of synapses between sensory fibers and interneurons in the dorsal horn of the
spinal cord, which first appear during the sixth week of gestation.27-28 Recent studies using electron
microscopy and immunocytochemical methods show that the development of various types of cells in the dorsal
horn (along with their laminar arrangement, synaptic interconnections, and specific neurotransmitter vesicles)
begins before 13 to 14 weeks of gestation and is completed by 30 weeks.29 Lack of myelination has been
proposed as an index of the lack of maturity in the neonatal nervous system30 and is used frequently to support
the argument that premature or full-term neonates are not capable of pain perception.9-19 However, even in the
peripheral nerves of adults, nociceptive impulses are carried through unmyelinated (C-polymodal) and thinly
myelinated (A-delta) fibers.31 Incomplete myelination merely implies a slower conduction velocity in the nerves
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or central nerve tracts of neonates, which is offset completely by the shorter interneuron and neuromuscular
distances traveled by the impulse.32 Moreover, quantitative neuroanatomical data have shown that nociceptive
nerve tracts in the spinal cord and central nervous system undergo complete myelination during the second and
third trimesters of gestation. Pain pathways to the brain stem and thalamus are completely myelinated by 30
weeks; whereas the thalamocortical pain fibers in the posterior limb of the internal capsule and corona radiata
are myelinated by 37 weeks.33 Development of the fetal neocortex begins at eight weeks of gestation, and by
20 weeks each cortex has a full complement of 109 neurons.34 The dendritic processes of cortical neurons
undergo profuse arborization and develop synaptic targets for the incoming thalamocortical fibers and
intracortical connections.35,36 The timing of the thalamocortical connection is of critical importance for cortical
perception, since most sensory pathways to the neocortex have synapses in the thalamus. Studies of primate
and human fetuses have shown that different neurons in the thalamus produce axons that arrived in the
cerebrum before mid-gestation. These fibers then "wait" just below the neocortex until migration and dendritic
arborization of cortical neurons are complete and finally establish synaptic connections between 20 and 24
weeks of gestation (Fig. 1).36-38 

 
Functional maturity of the cerebral cortex is suggested by fetal and neonatal electroencephalographic patterns,
studies of cerebral metabolism, and the behavioral development of neonates. First, intermittent
electroencephalographic bursts in both cerebral hemispheres are first seen at 20 weeks' gestation; they
become sustained at 22 weeks and bilaterally synchronous at 26 to 27 weeks.39 By 30 weeks, the distinction
between wakefulness and sleep can be made on the basis of electroencephalographic patterns.39-40 Cortical
components of visual and auditory evoked potentials have been recorded in preterm babies (born earlier than
30 weeks of gestation),40-41 whereas olfactory and tactile stimuli may also cause detectable changes in
electroencephalograms of neonates.40-42 second, in vivo measurements of cerebral glucose utilization have
shown that maximal metabolic activity is located in sensory areas of the brain in neonates (the sensorimotor
cortex, thalamus, and midbrain-brain-stem regions), further suggesting the functional maturity of these
regions.43 Third, several forms of behavior imply cortical function during fetal life. Well-defined periods of quiet
sleep, active sleep, and wakefulness occur in utero beginning at 28 weeks of gestation.44 In addition to the
specific behavioral responses to pain described below, preterm and full-term babies have various cognitive,
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coordinative, and associative capabilities in response to visual and auditory stimuli, leaving no doubt about the
presence of cortical function.45 Several lines of evidence suggest that the complete nervous system is active
during prenatal development and that detrimental or developmental changes in any part would affect the entire
system.25-26,42,46 In studies in animals, Ralston found that somatosensory neurons of the neocortex respond
to peripheral noxious stimuli and proposed that "it does not appear necessary to postulate a subcortical
mechanism for appreciation of pain [in the fetus or neonate]."47 Thus, human newborns do have the anatomical
and functional components required for the perception of painful stimuli. Since these stimuli may undergo
selective transmissions, inhibition, or modulation by various neurotransmitters, the neurochemical mechanisms
associated with pain pathways in the fetus and newborn are considered below. NEUROCHEMICAL SYSTEMS
ASSOCIATED WITH PAIN PERCEPTION The Tachykinin System Various putative neurotransmitters called the
tachykinins (substance P, neurokinin A, neuromedin K, and so forth) have been identified in the central nervous
system, but only substance P has been investigated thoroughly and shown to have a role in the transmission
and control of pain impulses.48-56 Neural elements containing substance P and its receptors appear in the
dorsal-root ganglia and dorsal horns of the spinal cords at 12 to 16 weeks of gestation.57 A high density of
substance P fibers and cells has been observed in multiple areas of the fetal brain stem associated with the
pathways for pain perception and control and the visceral reactions to pain.58-63 Substance P fibers and cells
have also been found in the hypothalamus, mamillary bodies, thalamus, and cerebral cortex of human fetuses
early in their development.58 Many studies have found higher densities of substance P and its receptors in
neonates than in adults of the same species, although the importance of this finding is unclear.61,64-68 The
Endogenous Opioid System With the demonstration of the existence of stereospecific opiate receptors69-70
and their endogenous ligands,71 the control of pain was suggested as a primary role for the endogenous opioid
system.72 Both the enkephalinergic and the endorphinergic systems may modulate pain transmission at spinal
and supraspinal levels.56,73 In the human fetus, however, there are no data on the ontogeny and distribution of
specific cells, fibers, and receptors (mu-, delta-, and kappa-opiate receptors) that are thought to mediate the
antinociceptive effects of exogenous and endogenous opioids.74 However, functionally mature endorphinergic
cells in fetal pituitary glands have been observed at 15 weeks of gestation and possibly earlier.74-76 Beta-
endorphin and betalipotropin were found to be secreted from fetal pituitary cells at 20 weeks in response to in
vitro stimulation by corticotropin-releasing factor.77 In addition, more production of beta-endorphin may occur in
fetal and neonatal pituitary glands than in adult glands.78,79 Endogenous opioids are released in the human
fetus at birth and in response to fetal and neonatal distress.80 Umbilical-cord plasma levels of beta-endorphin
and beta-lipotropin from healthy full-term neonates delivered vaginally or by caesarean section have been
shown to be three to five times higher than plasma levels in resting adults.78-81 Neonates delivered vaginally
by breech presentation or vacuum extraction had further increases in beta-endorphin levels, indicating beta-
endorphin secretion in response to stress at birth.82 Plasma beta-endorphin concentrations correlated
negatively with umbilical-artery pH and partial pressure of oxygen and positively with base deficit and partial
pressure of carbon dioxide suggesting that birth asphyxia may be a potent stimulus to the release of
endogenous opioids.81,83-87 Cerebrospinal fluid levels of beta-endorphin were also increased markedly in
newborns with apnea of prematurity,88-90 infections, or hypoxemia.83,91,92 These elevated values may have
been caused by the "stress" of illness,93 the pain associated with these clinical conditions, or the invasive
procedures required for their treatment. However, these high levels of beta-endorphin are unlikely to decrease
anesthetic or analgesic requirements,94 because the cerebrospinal fluid levels of beta-endorphin required to
produce analgesia in human adults have been found to be 10,000 times higher than the highest recorded levels
in neonates.95 The high levels of beta-endorphin and beta-lipotropin in cord plasma decreased substantially by
24 hours after birth.87,96 and reached adult levels by five days, whereas the levels in the cerebrospinal fluid fell
to adult values in 24 hours.87,97,98 In newborn infants of women addicted to narcotics, massive increases in
plasma concentrations of beta-endorphin, beta-lipotropin, and metenkephalin occurred within 24 hours, with
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some values reaching 1000 times those in resting adults. Markedly increased levels persisted for up to 40 days
after birth.87 However, these neonates were considered to be clinically normal, and no behavioral effects were
observed (probably because of the development of prenatal opiate tolerance). PHYSIOLOGIC CHANGES
ASSOCIATED WITH PAIN Cardiorespiratory Changes Changes in cardiovascular variables, transcutaneous
partial pressure of oxygen, and palmar sweating have been observed in neonates undergoing painful clinical
procedures. In preterm and full-term neonates undergoing circumcision99,100 or heel lancing,101-103 marked
increases in the heart rate and blood pressure occurred during and after the procedure. The magnitude of
changes in the heart rate was related to the intensity and duration of the stimulus104 and to the individual
temperaments of the babies.105 The administration of local anesthesia to full-term neonates undergoing
circumcision prevented the changes in heart rate and blood pressure,99-100-106 whereas giving a "pacifier" to
preterm neonates during heel-stick procedures did not alter their cardiovascular or respiratory responses to
pain.101 Further studies in newborn and older infants showed that noxious stimuli were associated with an
increase in heart rate, whereas non-noxious stimuli (which elicited the attention or orientation of infants) caused
a decrease in heart rate.22,107,108 Large fluctuations in transcutaneous partial pressure of oxygen above and
below an arbitrary "safe" range of 50 to 100 mm Hg have been observed during various surgical procedures in
neonates.109-111 Marked decreases in transcutaneous partial pressure of oxygen also occurred during
circumcision,106,112 but such changes were prevented in neonates given local analgesic agents,100,106,112
Tracheal intubation in awake preterm and full-term neonates caused a significant decrease in transcutaneous
partial pressure of oxygen, together with increases in arterial blood pressure113-115 and intracranial
pressure.116 The increases in intracranial pressure with intubation were abolished in preterm neonates who
were anesthetized.117 In addition, infants' cardiovascular responses to tracheal suctioning were abolished by
opiateinduced analgesia.118 Palmar sweating has also been validated as a physiologic measure of the
emotional state in full-term babies and has been closely related to their state of arousal and crying activity.119
Substantial changes in palmar sweating were observed in neonates undergoing heel-sticks for blood sampling,
and subsequently, a mechanical method of heel lancing proved to be less painful than manual methods, on the
basis of the amount of palmar sweating.120 Hormonal and Metabolic Changes Hormonal and metabolic
changes have been measured primarily in neonates undergoing surgery, although there are limited data on the
neonatal responses to venipuncture and other minor procedures. Plasma renin activity increased significantly
five minutes after venipuncture in full-term neonates and returned to basal levels 60 minutes thereafter; no
changes occurred in the plasma levels of Cortisol, epinephrine, or norepinephrine after venipuncture.121 In
preterm neonates receiving ventilation therapy, chest physiotherapy and endotracheal suctioning produced
significant increases in plasma epinephrine and norepinephrine; this response was decreased in sedated
infants.122 In neonates undergoing circumcision without anesthesia, plasma Cortisol levels increased markedly
during and after the procedure.123,124 Similar changes in Cortisol levels were not inhibited in a small number
of neonates given a local anesthetic,125 but the efficacy of the nerve block was questionable in these cases.
Further detailed hormonal studies126 in preterm and full-term neonates who underwent surgery under minimal
anesthesia documented a marked release of catecholamines,127 growth hormone,128 glucagon,127 Cortisol,
aldosterone, and other corticosteriods,129,130 as well as suppression of insulin secretion.131 These responses
resulted in the breakdown of carbohydrate and fat stores,127,132,133 leading to severe and prolonged
hyperglycemia and marked increases in blood lactate, pyruvate, total ketone bodies, and nonesterified fatty
acids. Increased protein breakdown was documented during and after surgery by changes in plasma amino
acids, elevated nitrogen excretion, and increased 3-methylhistidine:creatinine rations in the urine (Anand KJS,
Aynsley-Green A: unpublished data). Marked differences also occurred between the stress responses of
premature and full-term neonates (Anand KJS, Aynsley-Green A: unpublished data) and between the
responses of neonates undergoing different degrees of surgical stress.134 Possibly because of the lack of deep
anesthesia, neonatal stress responses were found to be three to five times greater than those in adults,
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although the duration was shorter.126 These stress responses could be inhibited by potent anesthetics, as
demonstrated by randomized, controlled trials of halothane and fentanyl. These trials showed that endocrine
and metabolic stress responses were decreased by halothane anesthesia in full-term neonates135 and
abolished by lowdose fentanyl anesthesia in preterm neonates.136 The stress response of neonates
undergoing cardiac surgery were also decreased in randomized trials of high-dose fentanyl and sufentanil
anesthesia.126,137,138 These results indicated that the nociceptive stimuli during survey performed with
minimal anesthesia were responsible for the massive stress responses of neonates. Neonates who were given
potent anesthetics in these randomized trials were more clinically stable during surgery and had fewer
postoperative complications as compared with neonates under minimal anesthesia.126,129 There is preliminary
evidence that the pathologic stress responses of neonates under light anesthesia during major cardiac surgery
may be associated with an increased postoperative morbidity and mortality (Anand KJS, Hickey PR:
unpublished data). Changes in plasma stress hormones (e.g., Cortisol) can also be correlated with the
behavioral states of newborn infants,124,139,140 which are important in the postulation of overt subjective
distress in neonates responding to pain. BEHAVIORAL CHANGES ASSOCIATED WITH PAIN Simple Motor
Responses Early studies of the motor responses of newborn infants to pinpricks reported that the babies
responded with a "diffuse body movement" rather than a purposeful withdrawal of the limb,2 whereas other
studies found reflex withdrawal to be the most common response.141-143 More recently, the motor responses
of 124 healthy full-term neonates to a pinprick in the leg were reported to be flexion and adduction of the upper
and lower limbs associated with grimacing, crying, or both, and these responses were subsequently
quantified.144,145 Similar responses have also been documented in very premature neonates, and in a recent
study, Fitzgerald et al. found that premature neonates (<30 weeks) not only had lower thresholds for a flexor
response but also had increased sensitization after repeated stimulation.146 Facial Expressions Distinct facial
expressions are associated with pleasure, pain, sadness, and surprise in infants.147 These expressions,
especially those associated with pain, have been objectively classified and validated in a study of infants being
immunized.102,148 With use of another method of objectively classifying facial expressions of neonates,
different responses were observed with different techniques of heel lancing and with different behavioral
states149 (and Grunau RVE, Craig KD: unpublished data). These findings suggest that the neonatal response
to pain is complex and may be altered by the behavioral state and other factors at the time of the stimulus.150
Crying Crying is the primary method of communication in newborn infants and is also elicited by stimuli other
than pain.151 Several studies have classified infant crying according to the type of distress indicated and its
spectrographic properties.152,154 These studies have shown that cries due to pain, hunger, or fear can be
distinquished reliably by the subjective evaluation of trained observers and by spectrographic analysis.155"160
This has allowed the cry response to be used as a measure of pain in numerous recent
studies.22,99,100,102,106152 The pain cry has specific behavioral characteristics and spectrographic
properties in healthy full-term neonates.161-164 Pain cries of preterm neonates and neonates with neurologic
impairment, hyperbilirubinemia, or meningitis are considerably different, thereby indicating altered cortical
function in these babies.165-168 Changes in the patterns of neonatal cries have been correlated with the
intensity of pain experienced during circumcision and were accurately differentiated by adult listeners.169 In
other studies of the cry response to painful procedures, neonates were found to be more sensitive to pain than
older infants (those 3 to 12 months old) but had similar latency periods between exposure to a painful stimulus
and crying or another motor response.99-100,103,152,170 This supports the contention that slower conduction
speed in the nerves of neonates is offset by the smaller interneuron distances traveled by the impulse.
Complex Behavioral Responses Alterations in complex behavior and sleep-wake cycles have been studied
mainly in newborn infants undergoing circumcision without anesthesia. Emde and coworkers observed that
painful procedures were followed by prolonged periods of non-rapid-eye-movement sleep in newborns and
confirmed these observations in a controlled study of neonates undergoing circumcision without anesthesia.171
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Similar observations have been made in adults with prolonged stress. Other subsequent studies have found
increased wakefulness and irritability for an hour after circumcision, an altered arousal level in circumcised male
infants as compared with female and uncircumcised male infants, and an altered sleep-wake state in neonates
undergoing heelstick procedures.103,172,173 In a double-blind, randomized controlled study using the
Brazelton Neonatal Behavioral Assessment Scale, 90 percent of neonates had changed behavioral states for
more than 22 hours after circumcision, whereas only 16 percent of the uncircumcised infants did.174 It was
therefore proposed that such painful procedures may have prolonged effects on the neurologic and
psychosocial development of neonates.175 A similar randomized study showed the absence of these
behavioral changes in neonates given local anesthetics for circumcision.176 For two days after circumcision,
neonates who had received anesthetics were more attentive to various stimuli and had greater orientation,
better motor responses, decreased irritability, and a greater ability to quiet themselves when disturbed. A recent
controlled study showed that intervention designed to decrease the amount of sensory input and the intensity of
stressful stimuli during intensive care of preterm neonates was associated with improved clinical and
developmental outcomes.177 Because of their social validity and communicational specificity, the behavioral
responses observed suggest that the neonatal response to pain is not just a reflex response.178-180
MEMORY OF PAIN IN NEONATES The persistence of specific behavioral changes after circumcision in
neonates implies the presence of memory. In the short term, these behavioral changes may disrupt the
adaptation of newborn infants to their postnatal environment,174-176 the development of parent-infant bonding,
and feeding schedules.181-182 In the long term, painful experiences in neonates could possibly lead to
psychological sequelae,22 since several workers have shown that newborns may have a much greater capacity
for memory than was previously thought.183-186 Pain itself cannot be remembered, even by adults187; only
the experiences associated with pain can be recalled. However, the question of memory is important, since it
has been argued that memory traces are necessary for the "maturation" of pain perception,3 and a painful
experience may not be deemed important if it is not remembered. Long-term memory requires the functional
integrity of the limbic system and diencephalon (specifically, the hippocampus, amygdala, anterior and
mediodorsal thalamic nuclei, and mamillary nuclei)188; these structures are well developed and functioning
during the newborn period.42 Furthermore, the cellular, synaptic, and molecular changes required for memory
and learning depend on brain plasticity, which is known to be highest during the late prenatal and neonatal
periods.189,190 Apart from excellent studies in animals demonstrating the long-term effects of sensory
experiences in neonatal period,191 evidence for memories of pain in human infants must, by necessity, be
anecdotal.178,192,193 Early painful experiences may be stored in the phylogenically old "procedural memory,"
which is not accessible to conscious recall.182-183-194 Although Janov195 and Holden196 have collected
clinical data that they claim indicate that adult neuroses or psychosomatic illnesses may have their origins in
painful memories acquired during infancy or even neonatal life, their findings have not been substantiated or
widely accepted by other workers. CONCLUSIONS Numerous lines of evidence suggest that even in the human
fetus, pain pathways as well as cortical and subcortical centers necessary for pain perception are well
developed late in gestation, and the neurochemical systems now known to be associated with pain transmission
and modulation are intact and functional. Physiologic responses to painful stimuli have been well documented in
neonates of various gestational ages and are reflected in hormonal, metabolic, and cardiorespiratory changes
similar to but greater than those observed in adult subjects. Other responses in newborn infants are suggestive
of integrated emotional and behavioral responses to pain and are retained in memory long enough to modify
subsequent behavior patterns. None of the data cited herein tell us whether neonatal nociceptive activity and
associated responses are experienced subjectively by the neonate as pain similar to that experienced by older
children and adults. However, the evidence does show that marked nociceptive activity clearly constitutes a
physiologic and perhaps even a psychological form of stress in premature or full-term neonates. Attenuation of
the deleterious effects of pathologic neonatal stress responses by the use of various anesthetic techniques has
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now been demonstrated. Recent editorials addressing these issues have promulgated a wide range of opinions,
without reviewing all the available evidence.197201 The evidence summarized in this paper provides a
physiologic rationale for evaluating the risks of sedation, analgesia, local anesthesia, or general anesthesia
during invasive procedures in neonates and young infants. Like persons caring for patients of other ages, those
caring for neonates must evaluate the risks and benefits of using analgesic and anesthetic techniques in
individual patients. However, in decisions about the use of these techniques, current knowledge suggests that
humane considerations should apply as forcefully to the care of neonates and young, nonverbal infants as they
do to children and adults in similar painful and stressful situations. References REFERENCE NOTES 1.
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